
On some Gaussian ensembles of Hermitian matrices

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1983 J. Phys. A: Math. Gen. 16 2655

(http://iopscience.iop.org/0305-4470/16/12/014)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 06:27

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/16/12
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 16 (1983) 2655-2684. Printed in Great Britain 

On some Gaussian ensembles of Hermitian matrices 

M L Mehtat and A Pandey 
CEN-Saclay, F-91191, Gif-sur-Yvette, Cedex France 

Received 14 January 1983 

Abstract. A Gaussian ensemble of Hermitian matrices with an arbitrary ratio of their 
symmetric and anti-symmetric parts is studied. Similarly a Gaussian ensemble of Hermitian 
quaternion matrices with an arbitrary ratio of their self-dual and anti-self-dual parts is 
studied. Analytical expressions for the correlation and cluster functions, as well as their 
limits when the order of the matrices is large, are derived for both ensembles. 

1. Introduction 

The problem of the distribution of eigenvalues of random matrices arose in connection 
with the distribution of slow neutron resonance levels in nuclear spectra (Porter 1965, 
Wigner 1967, Mehta 1967, Brody et a1 1981). The types of matrix ensembles to be 
considered depend on whether or not nuclear forces are invariant under time reversal. 
Three particular ensembles have been extensively studied. 

(i) The ensemble of real symmetric matrices, known as the Gaussian orthogonal 
ensemble (GOE). 

(ii) The ensemble of Hermitian matrices with equally probable real and imaginary 
parts (for quaternion matrices, equally probable quaternion real and quaternion 
imaginary parts) known as the Gaussian unitary ensemble (GUE). 

(iii) The ensemble of self-dual quaternion matrices known as the Gaussian sym- 
plectic ensemble (GSE). 

These three ensembles are basic models for energy level fluctuations of complex 
systems. For time-reversal-invariant systems, GOE or GSE is appropriate, depending 
on the properties of the Hamiltonian (Dyson 1902a, Mehta 1967 ch 2). On the other 
hand in the absence of time-reversal symmetry, the GUE is valid. For nuclear spectra 
GOE appears to be a good model (see Haq et a1 (1982) for a recent comparison of 
theory and experiment). 

Ensembles with an arbitrary ratio of time-reversal invariant and non-invariant 
parts have been of renewed interest in the past few years (Pandey 1981, French et a1 
1983, Pandey and Mehta 1983). The motivation underlying these studies is the 
suggestion, due to Wigner (1967), that the analysis of data in comparison with such 
ensembles may give an upper bound on the time-reversal breaking part of the nuclear 
forces. These studies reveal that the transition in the fluctuation properties, for the 
ensembles going from GOE to GUE, adequate for the above purpose, is very rapid 
and, in fact, discontinuous for infinite-order matrices. Available results (Pandey 198 1, 
French et ai 1983) indicate that, for infinite-order matrices, the GUE results are valid 
even for ensembles in which the imaginary part is larger in magnitude than the real 
+ Member of CNRS. 

@ 1983 The Institute of Physics 2655 



2656 M L Mehta and A Pandey 

part (see Mehta and Rosenzweig (1968), for the extreme case of purely imaginary 
matrices). Similar results were expected for ensembles going from GSE to GUE and 
beyond. 

In an earlier paper (Pandey and Mehta 1983) we considered in detail ensembles 
intermediate between GOE and GUE. In particular, we derived all correlation and 
cluster properties of the eigenvalues for finite- as well as infinite-order matrices. A 
similar analysis works for ensembles intermediate between GSE and GUE. In both 
cases, with minor changes, the results apply equally well for ensembles beyond GUE, 
including the extreme cases of antisymmetric and anti-self-dual matrices. Though 
not relevant for immediate physical applications, these results are obtained with little 
extra effort and it is worthwhile reporting them for their mathematical elegance. 

In 9: 2 we describe the ensembles and give a summary of the results. Later sections 
deal with the proofs; in 9: 3 we derive the joint probability density for the eigenvalues 
and in 5 4  the correlation and cluster functions for finite- as well as infinite-order 
matrices. Several appendices follow; appendix 1 contains recurrence relations and 
integrals which are frequently used in this article; in appendices 2 and 3 the normalisa- 
tion integrals for the joint probability density of the eigenvalues is derived and the 
last two appendices contain the verification of some equations of D 4. 

2. Summary of results 

2.1. Matrix ensembles from GOE to GUE and beyond 

Consider an ensemble of N x N Hermitian matrices [Hlk] = [Rik +is,,], with R real 
symmetric and S real anti-symmetric, i.e. 

The joint probability density for the matrix elements is taken to be 

12.2) 

where the normalisation constant c is 

On average 

(2.5) 

We shall choose the scale t“ such that 

2u2(1  + C Y 2 )  = 1. (2.6) 
As special cases we have; (i) a 2  = 0, so that S = 0 with probability one and the 

matrices H form the GOE; ( i i )  CY’ = 1, on the average R and S have the same magnitude 
for large N and the ensemble is GUE; (iii) C Y *  + cc, S dominates R,  and the ensemble 
of H may be referred to as the anti-symmetric Gaussian orthogonal ensemble (AGOE). 
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The joint probability density for the eigenvalues xl, , , , , xN of H is 

where 

and Pf [FIJI is the Pfaffian of a 2m x 2m matrix defined below. If N is even, 2m = N, 
we define 

(2.9) F,, = f (XI - XJ 1, i , j = l , 2  , . . . ,  N .  

If N is odd, 2m = N + 1, we use the preceding definition and in addition 

FI ,N+I  = - F N + l , l  = 1, i = 1 , 2  , . . . ,  N ,  FN-~,w+~ = 0 (2.9a) 

with 

f (x ) = erf [ (s) I".] = (s) 5,: exp( - $$ y 2 )  d y .  (2.10) 

The [Fiii] is an anti-symmetric matrix of even order and its Pfaffian? is, apart from a 
sign, the square root of its determinant. The normalisation constant CN is 

Note that when a 2  > 1, f ( x )  and CAN are both pure imaginary but p(x l ,  . . . , xN) remains 
real positive. Moreover, for a' = 0, 1 or "0, p ( x i ,  , . . , xN) and all the quantities derived 
below have well defined limits. 

All the eigenvalue correlations can be expressed in terms of functions of two 
variables. The n-level correlation function (Dyson 1962a, Mehta 1967 ch 5.1) is 

R,(x, , ,  . . . , x,) = {det[@(x,, X ~ ~ I ~ , ~ = ~ ,  ,,}'" (2.12) 

and the n-level cluster function (cumulant of the preceding) is 

T, (x l , .  . . , x,) = i T r  Z W x l ,  x 2 ) W x 2 ,  x 3 ) .  . . Wx,, xl), (2.13) 

where 

(2.14) 

and the sum in (2.13) is taken over all (n - l)! distinct cyclic permutations of the 

t The Pfaffian (see e.g. Mehta 1977) of any 2m x ?m anti-symmetric matrix A =[a , , ]  is the alternating 
multi-linear form in the elements a,, with i < j ,  

PfA-Pf [a , , l=~*a , , , , a , , , .  , . a,2m.lt2m, 

where the sum is taken over all (2m)!/(2"m!j  permutations ( i l ,  i 2 , .  . . , iz,) of ( l , 2 , .  . . , 2 m )  with the 
restrictions i l  < i2, i3 < il, . . . , i z m -  < i lm,  i l  < i3 < . , . < i2m-l ,  and the sign is + or - according to whether 
the permutation is even or odd. 
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indices ( 1 , 2 , .  . . , n ) .  Note the interchange of x and y in  the lower right-hand corner 
of (2.14). The two-point functions tN, SN, DN and JN are given in terms of other 
two-point functions I N ( x ,  y ) ,  g(x ,  y ) ,  @ N ( x ,  y )  and the one-point functions q ( x ) ,  t,bi(x), 
A i ( x ) ,  and E ( X )  defined below. 

(2.15) 

(2.16) 

(2.18) 

N = 2m even, 

(2.24) 
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1 2 2  
2m y ) / / - l  ~ 2 m ( t )  exp(-Ta t ) dt, N = 2m + 1 odd, 

N = 2m even, 

1 2 2  exp(-za x )A ( 
(2.25) F N ( x ,  Y )  = 

cpj(x)  = (2’j!4i)-1’2 exp(ax2)(-d/dx)’ exp(-x’), (2.26) 

(2.27) 

(2.28) 1 2 2  Aj(x)=[(1-a2)/(1+a2)Y’ exp(-$a2x2) J exp(9a r ) E ( X  -t)cpj(t)dt, 
-m 

E (x )= i sgnx .  (2.29) 

For large N, the level density Rl (x)  becomes a semi-circle for all a 

(2.30) 

The n-level correlation and cluster functions for n > 1 are discontinuous in a2  at 
a’ = 0. We have the GOE results for a 2  = 0 and the GUE results for a’> 0. On the 
other hand if 

R l ( x ) = r  -1 (2”~’)’’~. 

(2.31) 

remains finite when a 2  + 0 and N + 00, the n-level correlation and cluster functions 
have well defined limits for all A.  With xi -xi -* 0 and (xi -xi)R (xi) + rij = ii - rj, the 
n-level correlation function becomes 

RMS value of (Im, Hij) 
Local average spacing at x 

~ 5 
JT (x) A =A(x)= 

and the corresponding n-level cluster function is 

Yn(rl, .  . . , r , ;  A ) =  lim { ~ l ( x l ) .  . . R1(xn)}-’T,(x1,. . . , xn) 
N-m 

=~TrCa( r12 ;A)a ( t23 ;A) .  . .a(r , l ;A) (2.33) 

where the sum is taken, as in (2.13), over all (n - l ) !  distinct cyclic permutations of 
the indices (1 ,2 , .  . . , n )  and 

( s i n r r ) / m  D ( r ; A )  ] [ J ( r ; A )  ( s i n m ) / m  ’ 
cr ( r ;  A )  = 

with 

1 ”  D(r;  A )  = --I k sin kr exp(2A2k2) dk, 
T o  

1 msin kr 
J ( r ;  A )  = -; exp(-2A2k2) dk. 

(2.34) 

(2.35) 

(2.36) 

Note that as A + 00, D +00, J + 0, while the product JD + 0, so that in the expressions 
for R, and Y, one may replace D and J by zeros. 
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2.2. Matrix ensembles from GSE to GUE and beyond 

Introducing the quaternion units 

I=[: y ] ,  el=[: i], e . = [ :  -:I, e ,=[  0 -i ‘1 ’ (2.37) 

we shall think of a quaternion 

(2.38) 

as a 2 X 2 matrix. Conversely any 2 x 2 matrix will be taken as a quaternion with qo, 
ql ,  q2, q3 as ordinary complex numbers?. An N X N matrix with quaternion elements 
is thus equivalent to an ordinary 2N x 2N matrix, and conversely any 2N x 2 N  matrix 
can be cut into N2 blocks of 2 x 2 and each 2 x 2 block will be regarded as a quaternion. 
For definitions and properties pertaining to quaternion matrices see Dyson (1970, 
1972), Mehta (1977 ch 8). We recall in particular that a quaternion has two types of 
conjugates : 

(2.39) cf = 40 -q1el - w ~  - 4 3 ~  

and 

q* =so* +qTel+q2*e2+qTe3. (2.40) 

The two conjugates together give the Hermitian conjugate 

(2.41) 

The quaternion q is called real if q = q* and scalar if q = 4. Note that the 2 x 2 matrix 
representative of a real quaternion does not necessarily have real elements. A matrix 
M with quaternion elements M j k  is ‘quaternion real’ if M j k  = M,*k ; ‘q_uaternion pure 
imaginary’ if M ,  = -M$ ; self-dual if M j k  = Mkj, anti-self-dual if M j k  = - M k j  and 
Hermitian if M j k  =Mkj .  The matrix M is unitary if MMt = M t M =  1 and it is 
symplectic if MM = MM = 1.  A Hermitian self-dual matrix M can be diagonalised 
by a unitary symplectic matrix U 

M = UDUt, UU+ = url = 1, (2.42) 

Now, as in 0 2.1, consider an ensemble of N x N Hermitian quaternion matrices 

(2.43) 

where R and S are real self-dual and real anti-self-dual quaternion matrices respec- 
tively, i.e. with 

’: 

where the diagonal elements of D are real and scalar. 

[ q k  1 = [Rjk + i s j k  1, 

3 3 

, s l  ,= l  
R = R o +  2 R&e,, S=S’+ C S’e,; (2.44) 

Ro and S’ are real symmetric while R’ and So are real anti-symmetric. The probability 

t The coefficients qo, q l ,  q2 ,  and q3 are usually taken to be real numbers so that the quaternions may form 
a field. We are relaxing this constraint since we do not need the property that every non-zero quaternion 
must have an inverse. 
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density for the matrix elements will be taken as 

with the normalisation constant 
- 2 N  - N ( 2 N + l )  2 -2N2  c = 2  a (2TU ) . 

(2.45) 

(2.46) 

(2.47) 

On average the ratio of the anti-self-dual and self-dual parts of H is 

for large N. (2.48) 

We shall again choose the scale 2u2(1 + a 2 )  = 1 as in (2.6). 
As previously, we have the particular cases: (i) a 2  = 0, so that S = 0 with probability 

one and the matrices H form the GSE; (ii) a’ = 1,  on the average R and S have the 
same magnitude and the ensemble is GUE (of 2N X2N matrices); (iii) a2+o0, S 
dominates R and the ensemble of H may be referred to as the anti-self-dual Gaussian 
symplectic ensemble (AGSE). 

2 2  ~llsl12~/(ll~l12) = [(2N + 1)/(2N - 1)la = a  

The joint probability density for the eigenvalues XI, . . . , X Z N  of H is 

P ( x 1 , . . . , ~ 2 N ) = C N e x p  ( -- y 2  C x : ) A ( x I ,  . . . , X Z N )  Pf[F(xi - x j ) I i , j = ~ , . . . . ~ ~ ,  (2.49) 

where A is the product of differences of the 2 N  variables x l r  . . . , x Z N ,  equation (2.8), 

~ ( x )  = x  exp[-(l - a 4 ) x 2 / 4 a 2 ]  (2.50) 
and 

N 

(2N)! ( N ! ) - l  n (2j)! (2.51) 
1 

(1  + a 2 ) - N ( N + 1 )  
c;l = 2 - N ( N - l )  N 3N 2 N ( N - 1 )  

7T a ( 1 - a )  

The limits in the three cases a 2  = 0, 1 and CO are again well defined. 

and (2.13) with replaced by 
The n-level correlation functions and their cumulants are again given by (2.12) 

(2.52) 

with the new functions 

(2.55) 
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(2.58) 

where cpj(x) and E ( x )  are given by (2.26), (2.29), 

(2.60) 

(2.61) 

(2.62) 

For large N, we again have a semi-circular level density 

R1(x)  =7r-’(4N-x2)1’2 (2.64) 

whereas the n-level functions for n > 1 are discontinuous in a’ at a 2  = 0. On the 
other hand when a + 0 and 

A E A ( x  = (a/&)f?l(x) (2.65) 

is finite, the functions have well defined limits. Equations (2.32) and (2.33) are 
unchanged but with (T replaced by 

(sin r r ) / 7 r r  K ( r ; A )  ] 
a ( r ;  A )  = [ I ( r ; A )  (sin nr)/7rr 

where 

(2.66) 

(2.67) 

(2.68) 

Note that the limit of K ( r ;  A )  at A = 0 contains a term in S ( r ) / r .  This is due to the 
fact that in the GSE the eigenvalues are doubly degnerate. For A +a, the product 
IK being zero, I and K can be replaced by zeros (see the remark following (2.36)). 
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3. Joint probability density for the eigenvalues 

In this section we derive the joint probability density for the eigenvalues, equations 
(2.7) and (2.49), from that of the matrix elements, equations (2.2) and (2.45). The 
matrix element probability densities depend on the eigenvalues and the angular 
variables characterising the eigenvectors, and one has to integrate over these angular 
variables. For CY' = 0, 1, CO in both ensembles the matrix element probability densities 
depend only on the eigenvalues. Also the Jacobian separates into a product of two 
functions, one involving only the eigenvalues and the other involving only the eigenvec- 
tors (Dyson 1962b, Mehta 1967 ch 3); therefore the integral over the angular variables, 
giving only a constant, need not be calculated. For arbitrary a 2  this simplification is 
not there, but we know (Itzykson and Zuber 1980, Mehta 1981) an integral over the 
group of unitary matrices U, 

J exp[c Tr(A - U'SU)2] d U  = constant[h(a)A(b)]-' det{exp[c(ai --bj)']} (3.1) 

valid for arbitrary Hermitian matrices A and B having eigenvalues { a i }  and {b i }  
respectively, where A is the product of differences, equation (2.8). We also have two 
other results at our disposal. 

(i) The convolution of two independent Gaussian distributions with variances a: 
and uz2 is again a Gaussian with the variance a: +&: 

= [ 2 r ( a :  +(+:)I-~/~ exp[-y2/2(a:+a:)], (3.2) 

( i i )  For any sets of functions S i ( x ) ,  q ( x )  and x l (x )  and for a suitable measure dp(x) ,  
integrals of the form 

N 

11 = . . . ndp(xi)det[Bi(xj)]  sgn A(x), 
1 

(3.3) 

(3.4) 

1 3  = J  . 9 j fidp(xi)det[ei(xj), Ti(Xj), Xi(Xm)l i=1 , . . . .2m-i  (3.5) 
~ = l , , , , , m  -1 1 

can be evaluated by the method of integration over alternate variables and the theory 
of Pfaffians (Mehta 1967 ch 5.2 and appendix A.7). The result is 

(3.9) 
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(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

We therefore proceed in three steps. 
Firstly we write H as a sum, H = A  + B. This convenient breaking will be different 

according to whether a* < 1 or a* > 1 and has nothing to do with the previous writing 
of H as a sum of its real and imaginary parts. 

Secondly we use equation 13.1) to integrate over the unitary matrix, diagonalising 
B. The result is some determinant containing the eigenvalues of H and of A ,  and 
the product of differences of these eigenvalues. 

Finally we integrate over the eigenvalues of A using equations (3.3)-(3.14). 
The treatment of the ensemble of Hermitian quaternion matrices will be parallel. 

Constants will be ignored in the intermediate steps; the final constant will be fixed 
by the normalisation condition (see appendices 2 and 3). The detailed working is 
given in the following sub-sections. 

3.1. Matrices from G O E  to GCE and beyond 

We write H as a sum of two Hermitian matrices 

H = A + B  (3.15) 

and choose B so that its real and imaginary parts have the same variance. If a 2  < 1, 
the real part of H has a larger variance than its imaginary part and we choose A to 
be real symmetric. If a > 1 it is the imginary part of H which has a larger variance 
and we choose A to be pure imaginary anti-symmetric. In either case we adjust the 
variance of A and the common variance of the real and imaginary parts of B in a 
proper way. Thus our choices are: 

A ~ = A  = A * ,  

P1 ( A )  cc exp{-Tr A2/[4c2( 1 - U  ')I}, 
P 2 ( B )  a exp(-Tr B2/4c'a '1, 

if a' < 1, and 
A T = - A = A *  

Pl(A)aexp{-Tr A2/[4t12(cu2- l)]}! 

PZ(B)xexp(-Tr B2/4v2), 
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if a’> 1. We combine these equations as 

A ~ = A *  = A  sgn (1 - a 2 ) ,  

P1(A)aexp[-Tr A2/(4v211 - a21)], 

P 2 ( B )  K exp(-Tr B2/4v2y2), 

(3.16) 

(3.17) 

where y2=min( l ,  a’). Though equations (3.16) and (3.17) look alike, they have an 
important difference: T r B 2  contains two sums of squares, those of the real and 
imaginary parts of B, whereas T r A 2  contains only one of them. Equation (2.2) is 
now written in the equivalent form 

P(H) = P1(A)P2(H - A )  dA. (3.18) I 
Let xl, .  . . , x N  be the eigenvalues of H 

H = UxU’, U + U  = 1, (3.19) 

so that (see Dyson 1962b, Mehta 1967 ch 3) 

d H  a A2(x) d U  dx, (3.20) 

and the joint probability density for the xl, . . . , x N  is 

p ( x ) = p ( x l , .  . . , x N ) a I  P1(A)P2(H-A)A2(x)dU dA. (3.21) 

We consider separately the cases of A symetric and anti-symmetric. 

and from (3.16), (3.17), (3.21) and (3.1) we have 
When A is real symmetric, its real eigenvalues a l ,  . . . , aN are in general distinct 

(3.22) 

As far as the dependence on the eigenvalues is concerned, one has (Dyson 1962b, 
Mehta 1967 ch 3) 

dA a lA(a)l da l  . . . daN, (3.24) 

so that 

xdet  exp -(xi-ai)2)] sgn A(a) d a l  . . . daN. [ ( 4 v 2  

Using equations (3.3), (3.6) and (3.9), we get 

(3.25) 

(3.26) 
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where 

{[zl - ( 1  -a  ')xi]' + [z2 - (1  - a2)xiI2})], (3.27) 
1 

-exp( - 4vZa 2(1 -a  2, 

for i, j = 1 , 2 .  . . , , N ;  when the order N of the matrices is even. For N odd, we have 
one more row and column, for i = 1 , .  . . , N, 

b i , N + l = - b N + l , i =  )Kl. (3.28) 

On introducing the new variables Y = (z2  + zl)/&, r = ( z 2  - zl)/&, the integration 
on Y in (3.27) can be performed. A little algebra then gives 

bi, =constant e r f [ ( s ) l " ( x i  8 v  a -xi)] i, j = 1,  . . . , N. (3.29) 

Equations (3.26), (3.28) and (3.29) give (2.7) when A is real symmetric. 
When A is anti-symmetric pure imaginary, its eigenvalues are real and come in 

pairs * U , ;  zero is necessarily an eigenvalue if the order N of A is odd. As far as the 
dependence on the eigenvalues is concerned (Dyson 1962b) 

for N = 2m even: while 

d A a f i a f  n ( u ? - u ~ ) * ,  
1 l s i < j s m  

m 

A ( a ) = 2 "  ( U ?  - U ; ) ' ,  
1 l s i < j h m  

(3.30) 

(3.31) 

(3.32) 

(3.33) 

for N = 2m + 1 odd. (We take a l ,  . . . , a, as distinct positive numbers.) Thus from 
(3.16)-(3.18), (3.21), (3.1), (3.30) and (3.31) we get for N = 2m even 

i = l  . . . . ,  N ;  j = 1 ,  , . . ,  m. (3.34) 
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For N = 2m + 1 odd, instead of (3.30) and (3.31) we use (3.32) and (3.33). The 
result is again equation (3.34) in which the determinant contains one more column 

2 2 -1 2 a 2  (?xi) 3 = e x p ( - s x i ) .  
exp[-4v2(a2- 1) 

(3.35) 

For N even, we use equations (3.4), (3.7) and (3.11), to get from (3.34) 

with 
2 2 2 a a -1 [ ( 2 - 7 x i )  + ( z + .I> 2]] 4v2(a2- 1) (Y a 

bii = $ [exp( - 

For N odd, we use (3.5), (3.8), (3.12) and (3.13); the result is again (3.36) in which 
the Pfaffian contains one more row and a column 

A little algebra gives for (3.37) 

1 I,, %e-"sinh[(=) t 2 v  a (xi-xi)t 
m 2 1/2 

(3.38) 

(3.39) 

Equations (3.36), (3.39) and (3.38) give equation (2.7) for anti-symmetric A. 
Equation (2.7) is therefore established in all cases except for the overall constant. 

3.2. Matrices from GSE to GIJE and beyond 

We write the N x N quaternion matrix H as a sum 

H = A + B ,  = A  sgn(1 -a2) .  (3.40) 

The quaternion matrices A and B are Hermitian; the self-dual and anti-self-dual 
parts of B have the same variance; A is self-dual quaternion real if a'< 1, and 
anti-self-dual quaternion pure imaginary if a'> 1. Due to equation (3.2) equation 
(2.45) is equivalent to 

-Tr A2/(4v211 -a  2 / ) ] ,  (3.41) 

(3.42) 

where as before y 2  = min(1, a'). Let 

H = UxU', UU+ = 1, (3.43) 
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where H, x and U are 2 N  x 2 N  ordinary matrices, x is diagonal, the diagonal elements 
x l , .  , . , xZN of x are the eigenvalues of H .  As before (Dyson 1962b, Mehta 1967 ch 
3) 

d H a A 2 ( x l , .  . . , x ~ N )  dx dU, (3.44) 

dx z d x l . .  . dX2~. (3.45) 

We consider separately, as before, the cases of A self-dual and A anti-self-dual. 
When A is self-dual, its eigenvalues are real numbers a l ,  . . . , aN each repeated 

twice. Since the right-hand side of equation (3.1) is now of the form O/O, we cannot 
use it directly, but have to take limits when the eigenvalues of A become equal in 
pairs. The calculation gives 

exp[-Tr(A - U ~ U + ) ~ / 4 v ~ a ~ ]  d U a  (A(x)A4(a))-’ 

(3.46) 

i = 1 , .  , . , N; j =  1 , .  . . , 2 N ,  where A(x)=A(xl, .  . . , x Z N )  and A(u)=A(uI , .  . . , a N ) ,  
equation (2.8). 

Now as far as the dependence on the eigenvalues is concerned (Dyson 1962b, 
Mehta 1967 ch 3) 

dA a A4(a) da . . . daN = A4(a) da, 

so that 

(3.47) 

(3.48) 

Using equations (3.4), (3.7) and (3.11) one gets 

where 

(3.50) 

A little algebra now gives 

2 1-a 
hija(xi-xj)  exp ( --(x~-x,)’). 8 v a  (3.51) 

From (3.49) and (3.51) we get equation (2.49) for the case a 2 <  1.  
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When A is anti-self-dual, its eigenvalues are the real numbers *UI, *a’, . . . , *UN,  

and from equation (3.1) 

However, 
N 

A(*u~,  . . . , * U N )  = 2N n ai[A(a:, . . , 
1 

and as far as depeendence on the eigenvalues is concerned (Dyson 1962b) 
N 2 

[A(a:. . , . , U : ) ]  , d A E n a :  1 

so that 
N N 

1 

W 33 

p(x)EA(x)  lo . . . lo d a l e . .  daN n u i  exp( -1 1 2vZ(a2-1)  

(3.52) 

(3.53) 

(3.54) 

(3.55) 

where in the last step we have used equations (3.4), (3.7), (3.11), and 

A little algebra now gives 

(3.57) 

Equations (3.55) and (3.57) give (2.49) for a’> 1. 

constant. 
Equation (2.49) is therefore established for all values of a’, except for the overall 

4. Correlation and cluster functions 

To derive the correlation functions we shall use the theory of quaternion matrices 
(Dyson 1970, 1972, Mehta 1971, 1977 ch 8). 

Definition. Let Q be an N x N quaternion self-dual matrix. We define Tdet Q to 
be the scalar 

T det Q = (-1)P(qili2qi2ia . . qiri1)0(qj1i2qiZj3 . . 4i.il)o * * (4.1) 
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where the sum is taken over all permutations P consisting of exclusive cycles (ili2 . . . ir), 
(jljz . . .is) . . . , and the subscript zero denotes the scalar part. 

In particular we need the following two theorems (Dyson 1970,1972, Mehta 1971, 
1977 ch 8).  

Theorem 4.1. Let QN be an N x N quaternion self-dual matrix with elements qij = 
q(xi, xi) = qji, satisfying the conditions 

W 

[ - W 4 ( x .  y)q(Y,z)dy =4(x, z)+7q(x,z)-q(x,z)7,  (4.2) 

with 7 a constant quaternion. Then 
m 

1- m 
Tdet QN dxN = (c -N + 1)Tdet Q N - ~ ,  

where c is the constant scalar 
m 

c = I-, q(x, x )  dx 

(4.3) 

(4.4) 

and QN-I is the (N - 1)  X (N - 1)  quaternion self-dual matrix obtained by removing 
from QN the row and column containing the variable XN. 

Theorem 4.2. Let Q be an N x N self-dual quaternion matrix. Let us denote by 
M ( Q )  the 2 N  x 2N matrix obtained from Q when its quaternion elements are replaced 
by their 2 x 2 matrix representatives, equation (2.37). Then 

det M ( Q )  = (Tdet 0)’. (4.5) 

Let us consider the first ensemble, Using theorem 4.1 several times one can get 
the correlation function 

(4.6) 

as a Tdet of an n x n  quaternion matrix; the derivation relies on the fact that the 
p(x)  of equation (2.7) can be written as 

(4.7) P(X1, . . . , X N ) =  (I/N!)Tdet[@(xi, ~ j ) ] i . j = 1  ...., N 

where Wx, y )  (equation (2.14)) satisfies the equality 
CO 

W, Y )@(Y, z ) dy = @(x, z 1 + 7@(x, Z )  - @ ( x ,  z 17, (4.8) I_, 
in which 7 is a constant quaternion. Equation (2.12) then follows from theorem 4.2. 
The proof of equation (4.7) is given in appendix 4 and that of (4.8) in appendix 5 .  

Similarly one can get the correlation functions for the other ensemble, since 

p ( X 1 ,  . . . , x2N) = [(2N)!l-’Tdet[Q,(xi, X j ) ] i , j = ~  ,,,., ZN, (4.9) 

where p is now given by (2.49) and @ by (2.52), and since this Q, satisfies equation (4.8). 
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The proof of equation (4.9) is given in appendix 4 and that of (4.8) with @ replaced 
by @ is given in appendix 5 .  

Equation (2.13) is obtained from the observation that (Dyson 1970) the cluster 
function T, is the cumulant of the correlation function R ,  and the expression on the 
right-hand side of (2.13) is the cumulant of the Tdet[@(xi, x.)].,. 1 / = 1 . 2 .  .... n. 

To get the limits for large N of the correlation and cluster functions it suffices 
then to take the limits of @(x, y )  and @(x, y ) .  The limits of the functions SN(X, y) ,  
DN(x, y) ,  IN(x, y )  and J N ( x ,  y )  were derived by Pandey and Mehta (1983). Those of 
SN, DN and I N  are obtained from those of SN, DN and I N  by changing A 2  to - A 2  and 
replacing N by 2N. For g we have 

m 

[ R I ( x ) ] - ~ ~ ( x ,  y ) - - ( r / 8 A 3 J i )  exp(-r2/8A2)--rr-' lo k sin kr exp(-2A2k2) dk, 

(4.10) 

This completes the proof of the statements listed in § 2 .  Some technical details 
from which we get the limit of K N .  

are collected in the appendices. 
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Appendix 1. Some useful relations 

In this appendix we collect some recurrence relations and identities often used in the 
text and in later appendices. 

A1.1 

The harmonic oscillator functions 

obey the orthonormality 

and the recurrence relations 

(2 .26 )  

( A l . l )  

(A1.2) 

(A1.3) 

These equalities follow from those for Hermite polynomials (Bateman 1953, Szego 
1939) and will not be proved here. 
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A1.2 

The functions G j ( x )  and A j ( x )  defined by (2.27) and (2.28) satisfy the equations 

J Z $ j ( x ) = [ ( 1 + C Y 2 ~ / ~ 1 - C Y 2 ) l J [ J I ~ 1 - C Y 2 ~ ( p i - 1 ~ X ~ - ~ ~ l + C Y 2 ~ ( P l + l ~ X ~ 1 ,  (A1.4) 

JZ v ~ ( x )  = [( 1 + CY ’)/( 1 - CY ’ ) ] ’ [ J j (  1 - ’)Aj-l ( X  1 - JK (1 + a 2 ) A j + ~ ( ~ ) ] s  (A1.5) 

These relations can be easily derived from (A1.2) and (A1.3). 

A1.3 

The orthonormality relations involving $ i ( x ) ,  A i ( x )  and ( p j ( x )  are 

.x 

( A l . l )  

(A1.6) 

The second is obtained by partial integration and the third by parity argument. 

A1.4 

The recurrence relations 

( A l .  10) 

can be derived from (A1.4) and (A1.5). These relations are useful to verifv the 
equivalence of expressions (2.16) and (2.17) of (2.18) and (2.19) and of (2.21) and 
(2.22). 
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A1.5 

We need the integral 

To prove this equation we use the generating function 

to write 

OD 

exp[- i ( l+a2)y2+2yz -z2]dy 

Equating coefficients of z2’ on both sides we get (A1.12). 

A1.6 

We need the convolution integrals 

(A1.13) 

(Al .  14) 

(A1.15) 

with g(x, y )  given by equation (2.23). By partial integration (A1.14) is equivalent to 

To prove this we expand both sides of the identity 
- 4  1-a 
4a 

j-1 exp [ 2 yz - z - ;( 1 + a y - (7) (x - y )2] d y 

2 2  2 21 exp[ - (s) 2 2  + 2( s ) z x  - $(I - a2)x 
2a J, - - 
l + a  

(A1.17) 

in powers of z and use the generating function (A1.13). 
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Equation (A1.15) can be rewritten as 

This last equation is true, since the derivatives of both sides are equal, equation 
(A1.16), and the equality holds at one point x =CO. In fact at x = 03, f(x, y )  = 
sgn(x - y )  = 1, and we have to make sure that 

( A l .  18) 

For j odd, both sides are zero and the equality is evident. For j even, changing the 
sign of a 2  in (A1.12) and taking ratios we get (A1.18). 

AI .  7 Recurrence and orthonormality relations between +,(x), A,(x) and Q,(x). 

The functions +,(x) and A,(x), equations (2.62) and (2.63), are obtained from cl/,(x) 
and A,(x), equations (2.27) and (2.28), by changing the sign of a2.  So from (A1.4)- 
(A1.7) we get 

Jz +,(x) = [ (I  - a2)/(1 + a2)]’[J;. (1 + a2)cp,-1(x) - m(1- a2)cp,+1(x)], 

& cp,(x) =[(I -a2)/(1 +a2)Y[d (1 + a 2 ) A , - ~ ( x ) - m  (1 -a2)A,+i(x)],  

(A1.19) 

(A1.20) 

(A1.21) 

A1.8 

We also need the convolution integrals 
. x  

(A1.23) 

(A1.24) 

Equation (A1.23) can be established from the definitions of g(x, y), t,hj(x), equations 
(2.60), (2.62), and using equations (A1.16), (A1.2) and (A1.3). For equation (A1.24) 
we have from the definitions of g(x, y )  and Aj(x),  equations (2.60), (2.63), 

m 

-m 

4 l - C U  
xE(y -z)cpj(z) exp[-ia2(x2+z2)](x - y )  exp(-- 4a2 (X 4). 
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Changing the variable y to t = x - y,  one can integrate over t 

1 - ( y 4  ( iiaa4 2) ( 1 - 2  
e(x--Z-t)texp - 7 t  d t=exp  - ~ ( x - z )  

-2a2 J L  4a 

Now using equation (A1.16) one gets (A1.24). 

Appendix 2. A normalisation integral 

The constant in (2.11) being fixed by the condition 
m 00 

 XI,. . . , x N )  dxl . . . dXN = 1 I_, * ' . I, 
with p(xl,  . . . , X N )  given by (2.7), we shall evaluate the integral 

1 +a2 m 9) 

Cr;' =I -m . . . [ - m d x ~ .  . .dx~exp(- -xxxf)A(x)Pf[F~~] ,  2 

(A2.1) 

(A2.2) 

with 

A(x) = fl (xi -xj), 

and Fij defined by equations (2.9) and ( 2 . 9 ~ ) .  

A(x) can be written as a determinant 

(2.8) 
i < j  

The Pfaffian and A(x) are alternating functions of the variables xl, . . . , xN. The 

N-1 

0 
exp( -i x ~ ) A ( x )  = n (2-$! det[cpi-i(~j)]i.j=i,...,~, (A2.3) 

where cpi(x) is the normalised 'oscillator function' given by (2.26). The number of 
terms in the Pfaffian is (2m)!/(2"m!) with N = 2m or N = 2m - 1. 

It is convenient to discuss separately the cases N even and N odd. Let us first 
take the case N = 2m even. From the symmetry and what we said above, one has 

m 
N-1 

Ckl = n (2-9!&)1'2 . . . dxl . . . dxN exp( - fa2  1 x') 
0 

-m 

N-1 

= n (2-$!&)1/2 (2m)! J . . . J dxl .  I . dxN exp( -$a2 xxf) 
0 2"m ! 

(A2.4) 

(A2.5) 

For the last integral, we have from the theory of Pfaffians (Mehta 1977 appendix A.7) 
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where for i, i = 0, 1, . . . ,2m - 1, 

(A2.7) 

From parity one sees that aii = 0 if i +i is even. Thus the Pfafian reduces to a 
determinant 

Pf[aijli,j = O , I  ._._, 2m- 1 = det[azi,2j+ 11i.j=0,1, .... m - I (A2.8) 

The determinant is not changed if we add to any row (column) a constant multiple 
of another row (column). To choose convenient multiples, we observe that using the 
identity (A1.4) 

m 

-m 

= -2[(1 -a2)/(l  +a2)y+1/2Sij. (A2.10) 

In the last step we made use of equations (A1.16) and (A1.1). Thus 

(A2.11) 

and 

From (A2.6), (A2.8) and (A2.12) we finally have for N = 2m, 

(A2.12) 

(A2.13) 
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which is equation (2.1 l), since 

(A2.14) 

When N = 2m - 1 is odd, we have similarly 

(A2.15) 

where now for i, j = 0, 1, . . . , 2 m  -2, aii is given by (A2.7), and 

1 2 2  
a i , 2m-1=  -aZm-l,i = J -m exp(-ra x )4i(x) dx, i = O , l ,  . . . ,  2m-2, (A2.16) 

a 2 m - 1 , 2 m - 1 =  0.  (A2.17) 

Again we have aij = 0, if i + j  is even, so that 

Pf[aijIi,j=o,l ..... 2m-1 = det[a~i,~j+lIi,j=o,l ,..., m-1. (A2.18) 

We can again, without changing the value of the determinant, replace a2i,2j+l by bij, 
where for j = 0, 1, . . . , m -2 and i = 0,1, . . . , m - 1 the bij is given by equation 
(A2.ll) ,whilefori=O, 1 , . . . ,  m - 1 ,  

(A2.19) 
(equation A1.12). 

Collecting the results for N = 2m - 1, one has 

which on similar manipulations can be seen to be equation (2.11) with N = 2m - 1. 
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Appendix 3, Another normalisation integral 

The constant in equation (2.5 1) being fixed by the normalisation condition 
00 m 

P(X1,. . . , X ~ N )  dxl . . . d X 2 ~  = 1, 
1-00’ . . I_, 

with p(x1, . . . , X 2 N )  given by (2.49), we need the integral 
m 

1+CY22N 
Cjil = I . . . J dxl . . . dxZN exp( -7 x?)A(x) Pf[F(xi -xi)], 

We follow the reasoning of appendix 2, case even number of variables, and write 

where 
m 

-00 

m 

-m 

Now from (A1.3), (A1.16) and (Al . l )  one gets after a little algebra 

Thus 

which is the same as equation (2.51). 

Appendix 4. The joint probability density as a Tdet of a self-dual quaternion 
matrix 

Equation (4.7) will be verified separtely for the cases N even and N odd. 
When N is even, we observe that the 2N x 2N matrix 

(A4.1) 
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can be written as a product of two rectangular matrices of orders 2N X N and N X 2N 
respectively 

G = GiGZ, (A4.2)  

j = l , Z ,  ..., N 
1 ~ ~ k ( x j )  $Zk(Xj )  

G z = [ ~  
Z k ( X j )  (PZk(Xj )  k=O,1,  .... N/Z- l  ’ 

The rank of G I  or of G z  is at most N ;  it is in fact N, since the ( p z k ( x )  is an orthonormal 
sequence. The rank of G, the product of G 1  and GZ,  is therefore at most N (see e.g. 
Mehta 1977); in fact we know that it is N, since its first N rows are linearly independent. 
Therefore, the last N rows of G are linear combinations of its first N rows and vice 
versa. The determinant of the 2N x 2N matrix 

is therefore not changed if we subtract from its last N rows the corresponding rows 
of G :  

= det[g(xi, Xi)] det[DN(Xi, Xi)]. (A4.3)  
But 

l + a 2  Nf2 
det[g(xi, xi)] = 2 - N ( 7 )  exp( -az  1 x?> det[f(xi -xi)] (A4.4)  

a 

and 

= ( d e t [ w  (xi) ( ~ z k  (xi)I)’* (A4.5)  

Now $2k being a linear combination of ( P Z k - 1  and equation (A1.4), we can 
replace the columns 40, $ 2 , .  . . , $ZN-Z successively by (PI,  q 3 , .  . . , ( P Z ~ - ~  in the deter- 
minant. The result is 

det[DN(X,, X j ) I a  {det[(~j-i(xi)ll~ 

Kexp -Ex:  {det[~{-’]}~ 0 
Nexp 0 - E x ?  [A(x)]’, 

From equations (A4.3) ,  (A4.4)  and (A4.6)  we get 

(A4.6) 

N 

1 
det[@(xi, xj)]ocexp( -(1 + a 2 )  1 x’) det[f(xi -xj)][A(x)-J2, 
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which in view of equation (2.7) is 

When N = 2m + 1 odd, the method used above fails at one point; the N x N matrix 

(A4.8) 

of rank N - 1 has a zero determinant, while its multiplying factor becomes infinite 
due to the extra terms & and p N .  

Instead of G consider the 2N x 2N matrix 

(A4.9) 

where 6 is arbitrary and 
c m  

1 2 2  

c = J q Z m ( t )  exp(-Ia t ) dt. 
-a 

(A4.10) 

Thus 

] (A4.11) 

with eN, S N ,  I N  and DN given by equations (2.15), (2.17), (2.22) and (2.19). The rank 
of Gs is N. The determinant of the 2N x 2 N  matrix 

S N ( x i r  x j ) + e N ( x i ,  x j )  D N  (xi, x i )  + S 2 ( P 2 m  ( X i ) ( P Z m  ( x i )  

s N ( x j ,  x i ) + e N ( x j ,  x i )  

(A4.12) 

is not changed if we subtract from its last N rows the corresponding rows of G,; the 
resulting determinant factorises, 

det[@s(xi, x i ) ]  

= det[DN (xi ,  x i )  + 2 ( P ~ m  (xi ) ( P z ~  ( x j  ) I ( -  1 ) N  det{g (xi ,  x j )  

(A4.13) -(cs)-' exp[--qa 1 2  (xi 2 + x f ) l + p ( ~ i ,  x j ) - p ( x j ,  xi)). 

The first factor is 

S2{det[vl(xi), $ 1 ( x i ) ;  c~3(xi)9 $ 3 ( x i ;  * . . ; ( ~ 2 m - l ( x i ) ,  + 2 m - l ( x i ) ;  ( ~ z m ( x i ) l ) ~ .  

We can replace the last but one column by a linear combination of the last two 
columns. Choosing this combination properly, equation (Al.4), $ 2 m - l  can be replaced 
by qZm+ Then the column $ 2 m - 3  can be replaced by the column ( P 2 m - 4 ,  and so on. 
Thus the column $ 2 k + l  is replaced by (P2k for k = 0, 1 , .  . . , m - 1,  the determinant 
being multiplied by a constant. Thus the first factor in (A4.13) is proportional to 

sZ{det[~j-i(xi)li,j= I ,Z . . . . ,2m+i12 8' exp( -1 x?)[A(x 11'. (A4.14) 
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The second factor in equation (A4.13) is proportional to 

exp( -a2  1 xf)  det[f (xi -xj)-ks-’+ k ’ ( h ( ~ i ) - h ( ~ j ) ) ]  

where 
m 

1 2 2  expba t ) E  (x - t ) (p2 , ( t )  dt 

268 1 

(A4.15) 

(A4.16) 

and k and k ’  are certain constants. But 

det[f(xi -xi) - ks-’ + k’ (h  (xi) - h (xi))] 

(A4.17) 1 f ( X i  - x j ) - k s - ’ + k ‘ ( h ( x i ) - h ( x j ) )  0 kK2_k’h(Xi)  
ks-’ + k’h(Xj) 1 -ks-’ 

0 0 1 
= det 

-1 0 

The second determinant, being that of an anti-symmetric matrix of odd order N + 2, 
is zero. 

Thus the second factor of equation (A4.13) is proportional to 

(A4.19) 

From eqations (A4.13)-(A4.14) and (A4.19) on taking the limit S+O, we get for N 
odd, 

det[@(xi, xi)]Oc exp -i(l + a 2 )  x: A(x) d e t [ E j ] ~ [ p ( x l ,  . . . . , XN)] (A4.20) 

in view of equation (2.7). The value (A4.10) of the constant c is not required for this 
appendix; it will be needed in appendix 5 .  

Thus whether N is even or odd, the determinant of the 2N X 2N matrix [@(xi, xi)] 
is proportional to {p(xl, . . . , XN)}’, equation (A4.7) or (A4.20). Therefore, from 
theorem 4.2 

(A4.21) 

The constant of proportionality is fixed by the normalisation, theorem 4.1 applied N 
times and the fact that 

[ i  1 l2  

Tdet[@(xi, xi)] a p  (X 1, . . . , xN). 

m m I, @(X, x )  dx = [SN(X, X)+(N(X, X ) ]  dx =N. 

Arguments similar to the even-N case given above show that 

(A4.22) 
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which is equation (4.9) except for the constant. This constant is again determined by 
normalisation, theroem 4.1, and the fact that 

Appendix 5. Verification of equation (4.8) 

We will verify the equation 

where @ is defined by equation (2.14) and 

(A4.24) 

(4.8) 

(A5.1) 

We will also verify the same equation when @ is replaced by CP, equation (2.52), and 
r by -r. 

Writing for brevity FT(x, y )  = F(y, x )  and 

(A5.2) 

equation(4.8) above is 

S,: + 6,: 

where SN, ( N ,  DN andJN are defined by (2.17), (2.15), (2.19) and (2.20). This amounts 
to verifying that 

( S N + ~ N ) * ( ~ N + ~ N ) = ~ N + ~ N ,  D N  * J N  = 0 = J N  * ( S N  + [ N  ), 

(SN + 5 ~ )  * DN =DN, (A5.4) 

and, as a consequence, 

( sN  + t N  + * ( sN  + t N  ) + = (sN + ( N  I + ,  JN * DN = 0 = (SN +&)+ * JN, 

DN * ( S N + ( N ) + = D N .  (A5.5) 

For the verification of (A5.4) we will repeatedly use results of orthonormality and 
convolution integrals of appendix 1, 00 A1.3 and A1.4. Thus from the expressions 
(2.17), (2.19) and (2.22) and the equations of appendix A1.3, we have 

while from appendix A1.4 we have 

(A5.6) 

(A5.7) 
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For N odd we also need 

and 

S N  * 6 N ,  6 N  * S N t  6 N  * D N ,  PN * 6 N ,  

( F N - c L h )  * SNI DN * ( P N  -CL;) .  (A5.10) 

Those in (A5.8) are easily verified, and (A5.9) is a consequence of (A1.15). For 
(A5.10) we need to know 

and 

(A5.13) 

Integrals (A5.11) are zero by parity. For (A5.12) we note that A Z , + ~  is a linear 
combination of q2, and A2,-l, equation (A1.51, and hence of q 2 , ,  q 2 , - 2 , .  . . , q2,  q0. 
Similarly q2,+l is a linear combination of +b2,, $ 2 , - 2 ,  . . . , $2, $o by equation (A1.4). 
Thus A2,+1 is orthogonal to qZm and Q , + ~  is orthogonal to Az,,,, for j < m  (see 
appendix A1.3). The integrand in (A5.13) is a perfect derivative, equation (2.27), of 
a quantity vanishing at both ends. 

Therefore all the integrals in (A5.11)-(A5.13) are zero and so are (A5.10). 
Thus we have verified equation (4.8) in all the cases for @ ( x ,  y )  given by equation 

(2.14). 
The verification of (4.8) with Q, replaced by @, equation (2.52), and T replaced 

by -T is similar. From the expressions (2.53), (2.55), (2.58) and (2.60) together with 
( A l . l ) ,  (A1.21)-(A1.24) we have 

S N  * s N = s N  

S N  * g = -DN, 

SN * D N  = D N ,  

DN * I N  = SN, 

I N  * S N  = I N ,  

g * I N  = SN, 
or 

with T given by (A5.1). 
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